First solid-state photoemission experiments on the FAB10 beamline

LPMS, Université de Cergy-Pontoise, DSM, IRAMIS, SPEC, CEA-Saclay

M. C. Richter, O. Heckmann, K. Hricovini W. Ndiaye, M. Fancuilli, M. Lee J. Schusser, Z. El Youbi, E. Boiakinov, F. Alarab

L. Nicolaï, J.-M. Mariot, C. Cacho, J. Minar, M. Battiato...

- * time and spin resolved ARPES
- * Attolab NB Beamline characterisation
- * Transion Metal DiChalcogenides
- * electron spin dynamics, proof of half metallicity: application to La_{0.7}Sr_{0.3}MnO₃
- * ultrafast demagnetisation of Fe(001)
- * spin measurement and Rabbit

time and spin resolved ARPES

timescales in magnetism

Ligne de lumière NB

Spectre étroit (0.1 eV FWHM) Durée 20-30 fs 3 réseaux (couvrent de 30 à 100 eV) Pompe IR externe Stabilité de 100 nm

beamline characterisation with Au (111)

9 Novembre: HHG photons arrivent

beamline characterisation with Au (111)

9 Novembre: HHG photons arrivent

beamline characterisation with Au (111)

9 Novembre: HHG photons arrivent

beamline characterisation

beamline characterisation space charge

beamline characterisation space charge

beamline characterisation space charge

Transion Metal DiChalcogenides

Transion Metal DiChalcogenides

application:

flexible nanotechnology thin film transistors, displays, sensors, transducers, solar cells energy storage

heavier elements: W, Hf

strong spin- orbit coupling (SOC), strong spin-valley coupling

fundamental interest:

WTe₂ is a type-II Weyl semimetal Dirac cone , spinpolarized Weyl points

heterostructures

2D semiconductors embedded in a van der Waals-bonded heterostructure

Transion Metal DiChalcogenites

Premiers tests sur la ligne FAB 10 photoémission angulaire monochromateur narrow band

Transion Metal DiChalcogenides

TMDCs (WSe₂, WTe₂, HfTe₂) are very interesting candidates to explore their different degrees of freedom (valley pseudospin, layer pseudospin and spin).

• strong spin-orbit coupling (spin-polarization at the K point)

WSe₂

 valley structure of the conduction band makes the electron dynamics particularly interesting

pump-probe experiment

R. Bertoni et al. PRL 117, 277201 (2016)

-0.5

0.0

electron spin dynamics, proof of half metallicity: application to Fe₃O₄

electron spin dynamics, proof of half metallicity: application to Fe₃O₄

a)

b)

Battiato PRL 2017

electron spin dynamics, proof of half metallicity: application to $La_{0.7}Sr_{0.3}MnO_3$

majority spin

minority spin

E A Livesay et al J. Phys. Condens. Mat. 11 (1999) L279 W.E. Picket and D.J. Singh, JMM 172 (1997)237

ultrafast demagnetization of Fe(001)

context:

- demagnetization of Ni < 1 ps [Beaurepaire PRL 1996] with 40fs pulse
- microscopic processes involved to explain the dissipation of angular momentum remain debated

aim:

• follow the temporal evolution of the Fe(001) electronic structure

study the spin response of a ferromagnet during strong laser excitation to characterise the coupling between the electromagnetic field and electron spin in a relativistic

ultrafast demagnetization of Fe(001)

recent work on Co(001)

band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition: two fundamentally different limiting models of itinerant (Stoner) and localized (Heinsenberg)

ultrafast demagnetization of Fe(001)

band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition: two fundamentally different limiting models of itinerant (Stoner) and localized (Heisenberg) recent work on Co(001)

time-delay by spin polarisation and time-resolved measurement via RABBIT or AST

• time scale of the photoemission process: static spin-resolved ARPES absolute time duration of the transition from the initial to the final state

photon absorption: $\ell \rightarrow \ell \pm 1$

Eisenbud-Wigner-Smith: the time delay is due to a phase shift of different transitions

$$\tau_{\rm EWS} = \hbar \frac{\partial \phi}{\partial E_k}$$

$$\tau_{\rm EWS} = \frac{-\hbar}{\partial P/\partial \phi} (\dot{P} - \dot{r}\partial P/\partial r).$$

derivative of **spin-polarisation P** with respect to the binding energy

time-delay by spin polarisation and time-resolved measurement via RABBIT or AST

 time scale of the photoemission process: static spin-resolved ARPES absolute time duration of the transition from the initial to the final state photoelectron interaction time

time-delay by spin polarisation and time-resolved measurement via RABBIT or AST

800 Fermi edge 20 40 80 100 120 140 60 (b) 20 40 60 80 100 120 140 Photoelectron energy [eV] 4f-states (c) Fermi-edge $\Delta \tau = 110 \pm 70 \text{ as}$ -2 0 2 -4 4 Time delay [fs]

Cavalieri et al., Nature 2007

(a)

time-delay by spin polarisation and time-resolved measurement via RABBIT or AST

RABBITT: reconstruction of attosecond beating by interference of two-photon transitions

Interaction of the outgoing electron emitted by the attosecond extreme ultraviolet (XUV) pulse with an intense few-cycle infrared (IR) field leads to the formation of sidebands (RABBITT) or changes in the electron momentum (streaking)

merci

1D system Bi/InAs(100)

1D system Bi/InAs(100)

1D system Bi/InAs(100)

